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A B S T R A C T

Accurate determination of rooting depths in terrestrial biosphere models is important for simulating

terrestrial water and carbon cycles. In this study, we developed a method for optimizing rooting depth

using satellite-based evapotranspiration (ET) seasonality and an ecosystem model by minimizing the

differences between satellite-based and simulated ET. We then analyzed the impacts of rooting depth

optimization on the simulated ET and gross primary production (GPP) seasonality in California, USA.

First, we conducted a point-based evaluation of the methods against flux observations in California and

tested the sensitivities of the simulated ET seasonality to the rooting depth settings. We then extended it

spatially by estimating spatial patterns of rooting depth and analyzing the sensitivities of the simulated

ET and GPP seasonalities to the rooting depth settings. We found large differences in the optimized and

soil survey (STATSGO)-based rooting depths over the northern forest regions. In these regions, the deep

rooting depths (>3 m) estimated in the study successfully reproduced the satellite-based ET seasonality,

which peaks in summer, whereas the STATSGO-based rooting depth (<1.5 m) failed to sustain a high ET

in summer. The rooting depth refinement also has large effects on simulated GPP; the annual GPP in

these regions is increased by 50–100% due to sufficient soil water during the summer. In the grassy and

shrubby regions of central and southern California, the estimated rooting depths are similar to those of

STATSGO, probably due to the shallow rooting depth in these ecosystems. Our analysis suggests that

setting a rooting depth is important for terrestrial ecosystem modeling and that satellite-based data

could help both to estimate the spatial variability of rooting depths and to improve water and carbon

cycle modeling.

� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Accurate modeling of the soil water balance and evapotran-
spiration is essential for analyzing hydrological processes, water
management, and carbon cycles in terrestrial environments. Soil
water balance, which is determined by various water cycle
processes, such as precipitation, snowfall, snowmelt, evaporation,
transpiration, infiltration, and runoff, influences precipitation,
temperature, and atmospheric circulation through the release of
latent heat flux (e.g., Koster et al., 2004; Huang et al., 1996).
Photosynthesis and heterotrophic respiration are also affected by
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soil water availabilities through stomatal conductance closure
(e.g., Ball et al., 1987) and water availability for microbes (e.g.,
Andren and Paustian, 1987), which, in turn, affects the terrestrial
carbon budget (e.g., Nemani et al., 2002). The accuracy of soil water
simulations also impacts climate forecasting capabilities (e.g.,
Huang et al., 1996; Yang et al., 2004; Alfaro et al., 2006).

Because evapotranspiration (ET) is a major component of the
terrestrial water and energy cycles, its accurate modeling is
essential for soil water modeling. The accuracy largely depends on
model structure and parameters (Guswa et al., 2002), meteor-
ological data (e.g., White and Nemani, 2004; Rawlins et al., 2006),
vegetation phenology (e.g., White and Nemani, 2004; Buermann
et al., 2001), and below-ground properties (e.g., soil texture and
rooting depth) (Lathrop et al., 1995; Kleidon and Heimann, 1998).
Among model-related properties (model structure, ecophysiolo-
gical parameters and below-ground properties), evaluation of
rooting depth is essential because it is the primary determinant of
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Fig. 1. Land cover of the study area with flux observation sites in California based on

MODIS land cover data (MOD12Q1; Friedl et al., 2002) in the year 2001. Diamonds

(^) show the locations of flux observation stations used in the study.
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the maximum plant available water in the rooting zone and it
affects vegetation productivity through water stress during the dry
season. Generally, model-related properties which control evapo-
transpiration and soil water content include maximum stomatal
conductance, limiting functions of stomatal conductance to
environment variables, soil texture, and rooting depth. Maximum
conductance determines magnitude of seasonal ET variations and
its peak, limiting functions of stomatal conductance regulate ET
due to severe environmental condition, soil texture determines
volumetric water content, and only rooting depth substantially
determines amount of plant available water in the vertical soil
layer.

Although rooting depth can be determined via soil surveys,
several studies have pointed out that soil survey-based values
underestimate the true depth because direct observation of rooting
depth is not available for many regions, and only a small portion of
direct observations (<10%) reached to maximum rooting depth
(Schenk and Jackson, 2002). A small number of deep roots could
have a significant role in water uptake in dry seasons. Indeed,
default rooting depth settings in many ecosystem models are
shallow (usually <2 m; e.g. 1.5 m for LPJ model; Sitch et al., 2003,
1.0 m for CASA model; Potter et al., 1993), and some studies have
highlighted the existence of deep rooting systems in seasonally
water-limited ecosystems (e.g., Nepstad et al., 1994; Canadell et al.,
1996; Schenk and Jackson, 2002, 2005) and the importance of their
inclusion in models for the accurate simulation of the carbon and
water cycles (Kleidon and Heimann, 1998; Tanaka et al., 2004; Ichii
et al., 2007; Baker et al., 2008). Several studies have inferred
rooting depth by finding the depth that achieves maximum net
primary productivity (NPP) (Kleidon and Heimann, 1998) or that
maximizes the correlation of modeled GPP and the satellite-based
vegetation index seasonality (Ichii et al., 2007). However, none of
these studies used actual observations (e.g., observed ET) to
determine rooting depth.

Another difficulty with soil water and evapotranspiration
modeling is the lack of sufficient observations to provide the
information necessary to constrain the model parameters (e.g., Zhu
and Liang, 2005). However, recent advances in satellite observa-
tions provide an opportunity to monitor spatio-temporal patterns
in terrestrial water cycles, enabling spatial patterns of ET to be
obtained with sufficient accuracy (e.g., Nishida et al., 2003; Yang
et al., 2006; Zhang and Wegehenkel, 2006). These seasonal
variations have the potential to be used to constrain the model.

The purpose of this study is to refine the rooting depth data in
the terrestrial biosphere model using satellite-based ET season-
ality to improve the modeling capability for simulating both water
and carbon cycle seasonalities in California. We used the
Terrestrial Observation and Prediction System (TOPS) (Nemani
et al., 2003) as an ecosystem model and we used a support vector
machine (SVM)-based ET estimation (Yang et al., 2006) as a
satellite-based ET. First, TOPS was used to estimate rooting depths,
and we tested the sensitivities of the simulated ET seasonality to
the rooting depth settings at flux sites in California. The analysis
was then extended spatially, and we analyzed the sensitivities of
the simulated ET and GPP seasonalities to the rooting depth
setting.

2. Data and method

2.1. Study area

We focused our analysis on California, USA (Fig. 1). California is
mostly characterized by a Mediterranean climate with a dry season
in summer (e.g., April–September and March–October in the
northern and southern regions, respectively) and a wet season in
winter (e.g., December–February) (Fig. 2). Land cover patterns
follow the precipitation patterns, with evergreen needle-leaf
forests over northern California in the high-precipitation regions,
cropland and Savanna in the central valley, and open shrubland
that has little precipitation in the southern regions. The middle to
southern coastal regions are characterized by higher precipitation
than the inland areas.

2.2. Models

2.2.1. Satellite data-based ET

We used a machine learning technique for regressions to obtain
spatio-temporal ET variations as described by Yang et al. (2006).
The method is based on the regression-type support vector
machine (SVM), which transforms a non-linear regression into a
linear regression by mapping the original low-dimensional input
space to a higher dimensional feature space using kernel functions
(e.g., Vapnik, 1998; Cristianini and Shawe-Taylor, 2000), with
inputs of satellite-based incoming surface solar radiation (Rad),
land surface temperature (LST), enhanced vegetation index (EVI),
and land cover (Yang et al., 2006). The method was assessed at
more than 20 Ameriflux sites over the continental United States,
and the method was extended spatially using satellite data. The
method was determined to be effective for predicting spatio-
temporal ET patterns with acceptable accuracy (e.g., R2 = 0.75 and
root mean square error (RMSE) = 0.62 mmH2O day�1; Yang et al.,
2006).

The SVM analysis consists of three main steps for model tuning
and testing. First, the SVM model parameters (C: cost of errors, e:
width of an insensitive error band, and s: kernel parameter) were
obtained from a training set. Second, with the obtained parameters



Fig. 2. (a) Annual and (b) seasonal patterns of precipitation based on US daily precipitation real-time analysis from the Climate Prediction Center, averaged over 2001–2006.

MAM, JJA, SON, and DJF denote March–May, June–August, September–November, and December–February, respectively.
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for the model structure, we trained the model. Last, we evaluated
the model based on a test set. More details regarding the methods
are described by Yang et al. (2006). After evaluation, the model was
employed to obtain spatio-temporal variations of ET in California
using satellite-based data. 8-day ET averages were estimated for
both point and spatial analyses in every experiment. The data used
for the SVM model came from flux sites in the western United
States (Table 1 and Section 2.3.1).

2.2.2. Terrestrial water/carbon cycle model

We used TOPS to simulate the daily water and carbon cycle
processes (Nemani et al., 2003, 2009; White and Nemani, 2004).
TOPS integrates satellite data, ecosystem modeling, and static land
cover and soil information to simulate ecosystem status. Simula-
tions of hydrologic states and fluxes are based largely on the Biome-
BGC model (Thornton, 1998; Thornton et al., 2002) with the use of
the remotely sensed leaf area index (LAI). Calculation of GPP is based
on a production efficiency model (PEM) approach. Here, we provide
Table 1
Flux sites used in this study.

Site name State Longitude

Blodgett Forest CA �120.6328

Vaira Ranch CA �120.9507

Tonzi Ranch CA �120.996

Sky Oaks Young Stand CA �116.623

Sky Oaks Old Stand CA �116.623

Sky Oaks CA �116.640

Audubon grasslands AZ �110.5104

Metolius old ponderosa pine OR �121.6224

Metolius first young aged pine OR �121.5668

Wind River WA �121.9519

Abbreviations of vegetation classes: evergreen needle-leaf forest (ENF), Savanna (SV), S
a summary of the water cycle and GPP models in TOPS; details are
described by White and Nemani (2004) and Ichii et al. (2008).

Daily water budgets are calculated as the net flux of rainfall,
snowfall, evapotranspiration (ET is the sum of transpiration, soil
evaporation, canopy water evaporation, and snow sublimation),
snowmelt, and runoff. The snow model draws from a physically
based energy balance model (Ichii et al., 2008). ET is calculated
based on a Penman–Monteith approach using LAI and meteorol-
ogy. Stomatal conductance, the primary determinant of transpira-
tion, is formulated empirically (the Stewart adaptation of the Jarvis
model; Stewart, 1988) with maximum stomatal conductance and
temperature, vapor pressure deficit (VPD), radiation, and soil water
limitation factors. Soil water content affects stomatal conductance
through changes in leaf water potential and is expressed as the
balance between the inputs (snowmelt and precipitation) and
outputs (ET and runoff). Base-flow runoff component is not
included in the model and soil water in excess of the soil water
holding capacity is routed to runoff.
Latitude Veg. class References

38.8953 ENF Goldstein et al. (2000)

Misson et al. (2006)

38.4067 SV Baldocchi et al. (2004)

38.4316 SV Baldocchi et al. (2004)

33.3772 SH Stylinski et al. (2002)

33.3739 SH Stylinski et al. (2002)

33.3844 SH Lipson et al. (2005)

31.6000 GR –

44.4992 ENF Law et al. (2004)

44.4372 ENF Law et al. (2004)

45.8205 ENF Shaw et al. (2004)

hrubland (SH), and Grassland (GR).



Table 2
Ecophysiological parameters for TOPS model used in this study.

Parameter Unit ENF SV GR/CR SH

Maximum stomatal conductance mm s�1 0.002 0.002 0.002 0.0012

VPD: start of conductance reduction Pa 600 600 600 600

VPD: end of conductance reduction Pa 3000 3000 3000 3000

LWP: start of conductance reduction MPa �0.1 �0.1 �0.1 �0.1

LWP: end of conductance reduction MPa �1.5 �1.5 �1.5 �1.5

Canopy water interception coefficient Fraction LAI�1 0.001 0.001 0.001 0.001

Abbreviations of parameters: vapor pressure deficit (VPD) and leaf water potential (LWP). Abbreviations of vegetation classes: cropland (CR).
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Daily GPP is calculated based on a PEM approach (e.g., Monteith,
1972):

GPP ¼ emax � APAR � f ðenvironmentÞ (1)

where emax is the maximum light use efficiency, APAR is the
absorbed photosynthetically active radiation, calculated as the
product of photosynthetically active radiation (PAR) and FPAR (the
fraction of PAR absorbed by plant canopies), and f(environment) is
an environmental stress scalar set as the minimum limitation of
daily minimum temperature, VPD, and soil water. The environ-
mental stress scalar in each limitation factor ranges linearly from 0
(total inhibition of photosynthesis) to 1 (no inhibition) and is
defined in the same way as the stomatal conductance modeling.

We changed the formulations of soil water effects on stomatal
conductance and GPP in this study. Although the original model
used the soil water potential converted from the volumetric water
content in the soil layer to reduce the stomatal conductance and
GPP, we used the volumetric water content instead. This
modification slightly improved the RMSEs between the modeled
and satellite-based ET seasonality. The volumetric water contents
that correspond to the wilting point of soil (�1.5 MPa) and the start
of conductance closure (set as �0.1 MPa; Table 2) are used to
linearly reduce stomatal conductance as a water stress.

We briefly describe the effects of rooting depth on ET and GPP in
the model. The setting of the rooting depth determines the vertical
extent of the soil water storage accessible to plants; i.e., a deep
Fig. 3. Conceptual image of the method of determining rooting depth. (a) In the region wi

case of a shallow rooting depth setting, soil water is dried out in the mid and end dry seas

of deep rooting depth, stored water in the wet season can sustain the vegetation grow
rooting depth increases the soil water holding capacity. Soil water
content is calculated by the water balance of precipitation,
snowmelt, evapotranspiration, and runoff, and the soil water
holding capacity is used to calculate runoff; i.e., soil water in excess
of the soil water holding capacity is routed to runoff. Therefore,
soils with high water-holding capacities can store more water in
the wet season and, in turn, sustain photosynthesis and
evapotranspiration during the dry season (Fig. 3(a)). On the other
hand, soils with shallow rooting depths cannot hold enough water
to sustain photosynthesis and evapotranspiration during the dry
season, which leads to soil water stress, stomatal closure, and ET
and GPP reduction (Fig. 3(b)).

Ecophysiological parameters for each plant functional type are
derived from Biome-BGC values (White et al., 2000). We made
some changes to these parameters (Table 2) by comparing the
observed ET data to adjust the maximum stomatal conductance
and canopy leaf interception parameters, because simulations
based on the default parameters caused an overestimation of
evapotranspiration.

2.2.3. Rooting depth determination

We used satellite-based ET seasonality and the TOPS terrestrial
biosphere model to infer the suitable rooting depth for the TOPS
simulation at each grid. Because rooting depth potentially affects
ET seasonality during the dry season (see Section 2.2.2), we can
inversely estimate rooting depth using ET seasonality. For
example, if the observed ET is high during the dry season, the
th a long dry season, vegetation utilizes the water stored in the wet season. (b) In the

ons, which suppresses evapotranspiration and gross primary production. In the case

th throughout the entire dry season.
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ecosystem must have a deep rooting system to supply soil water in
the absence of rainfall (Fig. 3(a)). Conversely, if the observed ET is
diminished in the dry season, the ecosystem has a certain level of
rooting depth (Fig. 3(b)).

To find the appropriate rooting depth for the model, we used the
Golden Section Search algorithm (Press et al., 1992) as one-
dimensional optimization problem to minimize the RMSE between
the observed and simulated ETs (e.g., Kleidon and Heimann, 1998;
Kleidon, 2004). Initially, we set the range of rooting depth from 0.1
to 10.0 m and executed until the algorithm found the rooting depth
that minimizes the RMSE between the satellite-based and
simulated ETs, using every 8-day ET variation from 2001 to
2003. In this simulation, we found that, above a certain level of
rooting depth, there is very little sensitivity to the seasonal ET
variation in virtually no water stressed vegetation because there is
enough available water to sustain vegetation growth in the dry
season. Therefore, we set a standard to find the minimum rooting
depth that does not impart any additional change in the model
accuracy (RMSE) (<1%). We repeated this 30 times, until the
rooting depth values converged.

2.3. Data

We used (1) flux tower observation data, (2) satellite-based
data, (3) meteorological data, and (4) static data. Table 3 lists the
data used in the study and their purposes.

2.3.1. Flux tower observation data

We used flux tower observation data from 2000 to 2006, from
10 sites over the western United States (Table 1). The sites are
located throughout California, Arizona, Oregon, and Washington.
We obtained the Level 4 (gap-filled) weekly (8-day) ET and surface
radiation observations from the Ameriflux website (http://pub-
lic.ornl.gov/ameriflux). These data are used for (1) satellite data-
based ET estimation (ET and Rad) and (2) model validation (ET). We
obtained 1173 observation dates, including 435 for forest sites and
738 for non-forest sites.

2.3.2. Satellite-based time-variable data

We used an 8-day composite of the Moderate Resolution
Imaging Spectroradiometer (MODIS)-based LST (Wan et al., 2002)
and EVI (Huete et al., 2002) for the satellite-based ET estimation
and FPAR/LAI (Myneni et al., 2002) for the TOPS model from 2000
to 2006 (Collection 4 data). The EVI is originally composited on a
16-day basis; we therefore assigned each 16-day composite EVI to
its two corresponding 8-day periods. For the satellite-based ET
evaluation processes at the flux sites, we used MODIS 1-km
resolution American Standard Code for Information Interchange
(ASCII) subset data sets, each of which consisted of 7 by 7 km
regions centered on the flux towers for LST and EVI (Cook et al.,
Table 3
Time-variable data sets used in this study.

Source Parameter Data source o

Ameriflux data ET –

Rad. –

Satellite-based data LST MOD11A2; W

EVI MOD13A2; H

LAI/FPAR MOD15A2; M

Meteorological data Temp. CPC/NCDC da

Prec. CPC data

VPD Campbell and

Rad. Satellite-base

ET, Rad., LST, EVI, LAI, Temp., Prec., VPD refer to evapotranspiration, surface solar r

temperature, precipitation, and vapor pressure deficit, respectively.
2004). At each time step, we averaged these values using the high-
quality pixels (with the mandatory quality assurance (QA) flag
being good in the QA data). If none of the 49 values was of high
enough quality, we treated the period as missing. For the flux-site
model evaluation processes, we used the LAI and FPAR (for the
TOPS model) and LST and EVI (for satellite-based ET estimation)
from the MODIS 1-km ASCII subset data, and missing data were
replaced by a 2001–2006 average calculated from high-quality
pixels. For the spatial analysis, we used original 1-km spatial
resolution data from MODIS LST and EVI for satellite-based ET
estimation and FPAR/LAI for TOPS inputs; for data cleaning, all data
were filled using averaged 8-day data calculated from 2001 to 2006
at each grid point if the QA flags were not good.

2.3.3. Meteorological data

We used daily gridded climate data from 1996 to 2006 for the
analysis. Daily maximum and minimum temperatures were
produced by kriging with altitude correction, using point
observations from the National Climatic Data Center (NCDC) data
(Jolly et al., 2005). Vapor pressure deficit (VPD) was calculated by
assigning the daily minimum temperature as the dew point
temperature (Campbell and Norman, 1998). Daily precipitation
fields are derived from real-time analysis of U.S. daily precipitation
by the Climate Prediction Center at quarter degree resolution
(available at http://www.cpc.ncep.noaa.gov/products/precip/real-
time/retro.shtml). Radiation data are from the Surface Radiation
Budget (SRB, derived from the Geostationary Operational Envir-
onmental Satellite and original spatial resolution is 0.25 degree)
project, which relies on satellite observations and on an atmo-
spheric radiative transfer model (Pinker et al., 2002). Missing
radiation values were filled by long-term means. We used the 8-
day average of radiation as an input for the satellite-based ET
estimation and all daily climate fields as TOPS model inputs.

2.3.4. Static data

The static data consist of land cover, soil properties, and
elevation. Land cover data are derived from MODIS Land Cover data
(MOD12Q1; Friedl et al., 2002) and are used as inputs for the
satellite-based ET estimation and TOPS. Using a data set of 1-km
gridded soils from Pennsylvania State University (based on the
State Soil Geographic Database, STATSGO, and created by Miller
and White, 1998), we generated soil depth and percent sand, silt,
and clay, as required by TOPS. For each 1-km pixel, the input data
consisted of texture, rock fraction, and percentages of sand, silt,
and clay of 11 soil layers. Depth to bedrock was also included. Thus,
depth could be obtained either from the depth to bedrock or by
examining the 11 layers. We applied the same methods as of White
and Nemani (2004) to produce soil texture and rooting depth from
the STATSGO data for use as TOPS inputs. First, for each pixel, we
extracted only those layers having a depth less than or equal to the
r method Purpose

Satellite-based ET

Satellite-based ET

an et al. (2002) Satellite-based ET

uete et al. (2002) Satellite-based ET

yneni et al. (2002) TOPS simulation

ta TOPS simulation

TOPS simulation

Norman (1998) TOPS simulation

d (GCIP) Satellite-based ET and& TOPS simulation

adiation, land surface temperature, enhanced vegetation index, leaf area index,

http://public.ornl.gov/ameriflux
http://public.ornl.gov/ameriflux
http://www.cpc.ncep.noaa.gov/products/precip/realtime/retro.shtml
http://www.cpc.ncep.noaa.gov/products/precip/realtime/retro.shtml
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recorded depth to bedrock. For these layers, we then extracted,
where available, the sand, silt, clay, and texture information. Next,
we calculated the layer-weighted percentage of sand, silt, and clay
information. Finally, we calculated the rock fraction-corrected
layer-weighted soil depth. We used HYDRO1K data (http://
edc.usgs.gov/products/elevation/gtopo30/hydro/index.html) for
elevation data.

3. Experiment

The study consisted of two steps: point and spatial analysis for
model simulation and evaluation. First, we tested the satellite-
based ET, estimated rooting depth, and simulated ET seasonality at
four flux sites in California. Second, we extended the analysis to all
of California to estimate spatial patterns of rooting depth and
seasonal ET variations. We also assessed the impacts of rooting
depth refinements on simulated GPP. For all simulations, we used
two different rooting depth settings: STATSGO (soil survey-based;
Section 2.3.4) and optimized rooting depths (Section 2.2.3).

First, we tested the performance of the satellite data-based and
model-based ET estimations at four flux sites in California. To do so,
we tuned the SVM model using satellite-based EVI and LST, flux
site-based radiation, and land cover as inputs, and we obtained ET
as the output. Using the established model, we applied satellite-
based data (LST, EVI, Rad, and LC) to obtain the continuous 8-day
averaged ET from 2001 to 2006. The estimated ET and TOPS
ecosystem models are used to infer the rooting depth at each flux
site based on the algorithms described in Section 2.2.3. We then
ran the model using STATSGO, optimized the rooting depth for
model testing, and analyzed the impacts of different rooting depth
settings on simulated ET seasonality. For the simulations, we ran
the model from 1997 to 2006, and only the outputs from 2001 to
2003 were used for estimating rooting depth, and from 2004 to
2006 for model validation.

Second, we performed spatial analysis for California. We started
by obtaining the spatio-temporal variations of ET based on the
satellite-based ET estimation. Then, using the satellite-based ET
and TOPS terrestrial ecosystem model, we estimated the rooting
Fig. 4. Temporal variations in observed (gray) and satellite-base
depth in each grid. Last, we ran the model using STATSGO and
optimized rooting depths and analyzed the sensitivity of ET and
GPP seasonality to the rooting depth settings. For the simulations,
we ran the model from 1997 to 2006, and only the outputs from
2001 to 2003 were used for estimating rooting depth, and from
2004 to 2006 for model validation.

4. Results and discussion

4.1. Point analysis

4.1.1. Evaluation of satellite-based ET estimation

We used ET observations from 2000 to 2006 at 10 Ameriflux
observation sites to develop the model; we thus obtained SVM
kernel parameters of C = 1.072, s = 7.464, and e = 0.203, with a
correlation coefficient of R2 = 0.76 and a RMSE of 0.49 mmH2O day�1

between the observed and satellite-based ETs. Compared with Yang
et al. (2006), we obtained a similar R2-value but a smaller RMSE
value, which was probably due to our model, which was more
spatially specific than their original spatial scale.

Detailed evaluations of the satellite-based ET time variations
revealed its promising capability to estimate spatio-temporal ET
variations in the study area (Fig. 4). For example, at Blodgett Forest
site, Vaira Ranch, and Tonzi Ranch, both seasonal and interannual
ET variations were captured well by the satellite-based ET
estimation with high R2 and small RMSEs (R2 = 0.93 and RMSE =
0.43 mmH2O day�1 for Blodgett Forest, R2 = 0.76 and RMSE = 0.34
mmH2O day�1 for Tonzi Ranch, and R2 = 0.83 and RMSE = 0.37
mmH2O day�1 for Vaira Ranch). In the dry open shrubland site of
Sky Oaks, the accuracy of the model is lower than the other sites
(R2 = 0.35 and RMSE = 0.47 mmH2O day�1) due to small seasonal
ET variation and difficulty in monitoring sparse vegetation cover
from satellite-based observation (Sims et al., 2006).

4.1.2. Rooting depth estimation and its impacts on ET seasonality

Optimization of the rooting depth based on the satellite-based
ET and the TOPS model estimates deeper rooting depths than
STATSGO does, with smaller RMSEs between the satellite-based
d (black) evapotranspiration at four flux sites in California.

http://edc.usgs.gov/products/elevation/gtopo30/hydro/index.html
http://edc.usgs.gov/products/elevation/gtopo30/hydro/index.html


Table 4
Estimated and STATSGO rooting depths at flux sites, California.

Site STATSGO Optimized

Blodgett Forest 1.3 m (1.20) 3.9 m (0.43)

Tonzi Ranch 0.4 m (0.46) 0.7 m (0.32)

Vaira Ranch 0.4 m (0.42) 0.5 m (0.39)

Sky Oaks (Young) 0.4 m (0.54) 2.4 m (0.47)

Numbers in parentheses are the RMSE (mmH2O day�1) between satellite-based and

simulated 8-day averaged ET from 2004 to 2006.
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and model-based ETs (Table 4). Models based on optimized rooting
depths successfully simulated ET seasonal variations, providing
data that are consistent with satellite-based estimation and show
small errors. Due to large differences between the optimized and
STATSGO rooting depths, the improvement of the simulated ET
seasonality at Blodgett Forest was drastic. For Vaira Ranch and
Tonzi Ranch sites, although the differences between the optimized
and STATSGO rooting depths were not as large, improvements in
the seasonal ET simulations were still seen in the middle to end of
the growing season. For Sky Oaks site, only slight improvements
were achieved despite of deeper rooting depth estimation. It is
probably due to difficulty in monitoring sparse vegetation using
satellite-based vegetation index (Sims et al., 2006) and insufficient
modeling of bare soil evaporation after rainy day (spikes detected
in Fig. 5(d)).

Field observations also support that the estimated rooting
depths are reasonable. For example, deep rooting depths have been
reported for the Blodgett Forest site (at least 2 m; Laurent Misson,
personal communications). In addition, 0.5 m of rooting depth is
reported at Vaira Ranch site (Ryu et al., 2008).

The point-based analysis suggests the importance of rooting
depth refinement in the ET simulations. The optimization
processes produced more reasonable rooting depth and simulated
ET estimations. From the results of the point-scale analysis, we
expect spatial application of the method to significantly improve
the seasonal ET simulations.
Fig. 5. Model-simulated (based on optimized (black line) and STATSGO rooting depths (

2003 and 2004–2006 are used for model parameter derivation and validation, respecti
4.2. Spatial analysis

4.2.1. Rooting depth and impacts on ET

Spatial patterns of optimized rooting depth, as estimated from
the satellite-based ET and TOPS ecosystem model, show very clear
spatial variations that are dependent on vegetation type (Fig. 5).
Deep rooting depths were estimated across the whole forest region
in the northern part of California (3–5 m) and in some cropland
regions of the central valley (>5 m), whereas most of the southern
regions show shallow rooting depths. The forest regions are
generally characterized by dry summers with high ET (e.g., Figs. 2
and 4); therefore, deep rooting systems are required to sustain
peak ET in the summer, as shown in the point analysis. The central
valley is basically irrigated cropland; because our model does not
include irrigation effects, the deeper rooting depths are estimated
to sustain high ET during the summer, which is enabled by the
water supply from irrigation.

Compared to the STATSGO-based rooting depth estimations,
our estimated rooting depths are much deeper in the northern
forests and the central valley cropland regions (Fig. 6). For
example, the STATSGO-based rooting depth is around 1 m
throughout the forest regions, whereas this study estimated them
to be at least 2–3 times deeper. We also found that estimated
rooting depth in northern forests are much deeper than that from
literature (e.g., 1.04 m based on the depth of 95% root biomass for
warm-temperate forest and 1.71 m based on the depth of 95% root
biomass for Mediterranean shrubland and woodland; Schenk and
Jackson, 2002), and close to its maximum (3.9 � 0.4 m for
temperate coniferous forest; Canadell et al., 1996).

The choice of rooting depth settings significantly affect the
RMSEs between the modeled and satellite-based ET values, and the
optimized rooting depth improved the model performance in
terms of ET seasonality (Fig. 7). Compared with the simulation
based on STATSGO rooting depths, we found that RMSEs decreased
significantly wherever estimated rooting depths were significantly
deeper than the STATSGO-based survey values. For example, the
gray)) and satellite-based (diamond) ET variations from 2001 to 2006. Years 2001–

vely.



Fig. 6. Spatial patterns in (a) optimized and (b) STATSGO rooting depths in California. Barren and urban areas are shown in gray.

Fig. 7. Root mean square error of 8-day ET variations obtained by TOPS under (a) optimized and (b) STATSGO rooting depth settings and satellite-based ones. Three years of

results are used, from 2004 to 2006. Barren and urban areas are shown in gray.
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large RMSEs based on the STATSGO rooting depth settings across
all the forest regions (>1.2 mmH2O day�1) are greatly improved in
our simulation based on optimized rooting depth (<0.8 mmH2O
day�1).

Averaging the rooting depths in each land cover class shows the
strong contrast among land cover classes in estimated rooting
depths (Table 5). Evergreen needle-leaf forests have the deepest
Fig. 8. Seasonal ET variations in TOPS under optimized rooting depth (top), and TOPS und

from March, May, July, and September are shown by averaging three years of data, fro
rooting depths (3.1 � 1.2 m), with Savanna classes also showing
great depths (>2.0 m). The rooting depth refinement also drastically
improved ET estimation in evergreen needle-leaf forest regions,
leading to a 40% reduction in the RMSE between satellite-based and
model-based ET values. Improvements in ET estimations are also seen
for other land cover classes, although none as drastic as evergreen
needle-leaf forests.
er STATSGO rooting depths (middle), and SVM-based estimations (bottom). Results

m 2004 to 2006. Barren and urban areas are shown in gray.



Table 5
Estimated and STATSGO rooting depths (m) and RMSEs between satellite-based and model-based ET (mmH2O day�1) in each land cover class.

Land cover Estimated rooting depth (RMSE) STATSGO rooting depth (RMSE)

Evergreen needle-leaf forest 3.3 � 1.4 m (0.66) 0.9 � 0.3 m (1.10)

Open shrubland 0.6 � 0.5 m (0.73) 1.0 � 0.5 m (0.73)

Woody Savanna 2.2 � 1.7 m (0.67) 0.8 � 0.4 m (0.80)

Savanna 2.2 � 1.4 m (0.74) 1.0 � 0.4 m (0.78)

Grassland 1.3 � 1.0 m (0.79) 0.9 � 0.5 m (0.80)

Cropland 2.4 � 1.3 m (1.02) 1.4 � 0.1 m (1.02)

RMSEs are calculated using 2004–2006 satellite-based and simulated 8-day averaged ET.

Only the land cover classes cover over 20,000 km2 are selected.
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Monthly variations in the simulated and satellite-based ETs
show that the simulation based on optimized rooting depth agrees
very well with the satellite-based ET; however, the simulation
based on the STATSGO rooting depth underestimated the summer
ET in forest regions (Fig. 8). The seasonal variations in satellite-
based ET show increases in ET from spring to summer, with peaks
in July. The simulated ET based on optimized rooting depth shows
the same seasonal evolution in the northern forest regions;
however, the simulation based on the STATSGO rooting depth
shows a large decline after July. The sufficient soil water holding
capability that comes with deeper rooting depths improved the
model significantly.

4.2.2. Impacts on simulated GPP seasonality

Due to tightly coupled effects of ET and GPP, optimization of
rooting depth affects the simulated GPP seasonality similar to the
way ET does, especially in the summer, and annual total GPP was
greatly increased (50–100%) in the forest regions by the refinement
Fig. 9. Percentage difference of annual GPP between simulations with STATSGO

rooting depth and optimized rooting depth, calculated as 100 � (optimized–

STATSGO)/STATSGO. Annual GPP is calculated from the 2004 to 2006 average.

Barren and urban areas are shown in gray.
of rooting depth (Fig. 9). In the STATSGO rooting depth simulation,
summer GPP values are underestimated due to insufficient water
availability with the shallow rooting depths in the forest regions. In
contrast, the model based on optimized rooting depth simulated a
higher GPP in summer that was consistent with the satellite-based
ET seasonality. This increased annual GPP value in the forest
regions and some coastal regions resulted in improved carbon
cycle simulations. In most grassland and shrubland regions,
significant changes in annual GPP were not detected due to the
difficulty of interpreting satellite observations of sparse vegetation
(see Sections 4.1.1 and 4.1.2), and/or shallow rooting depths in
these ecosystems as found from the soil survey.

4.3. Model limitation and further improvements

Although the rooting depth optimization process improved the
spatial patterns of rooting depths and water and carbon cycle
simulations in California, potential limitations and further
improvements should be noted.

First, the eddy covariance’s estimate of ET contains errors due to
the problems of energy imbalance. The quantity, ET + H (sensible
heat), measured by eddy covariance is often less than the quantity,
Rn (net radiation) � G (ground heat flux) (Wilson et al., 2002;
Foken, 2008). Although this imbalance potentially affects observed
ET, satellite-based ET estimation and rooting depth refinement, our
findings of deep rooting depth over evergreen needle-leaf forest
regions in California are not substantially affected.

Second, the assumption of a one-box soil water layer in TOPS
tends to overestimate the soil water evaporation, underestimate
the runoff due to ignoring vertical water transport, and under-
estimate the water stress for stomatal conductance due to the lack
of vertical distribution of water and roots. However, these effects
are not important in this study because (1) the potential
overestimation of soil water evaporation due to a single soil water
layer does not have a large impact in dense forests, (2) because
runoff occurs mostly in the rainy season, the impact on our rooting
depth estimation is small because it is largely determined by the
amount of precipitation and the length of the dry season, and (3)
underestimation of the water stress for stomatal conductance and
GPP due to the lack of vertical distribution of water and roots may
be partially compensated for by hydraulic redistribution (Candwell
et al., 1998; Brooks et al., 2002). In addition, the credibility of
estimated rooting depth and modeled ET are guaranteed by
validations at the flux sites.

Third, the current water cycle model ignores the lateral water
flow due to topography and potentially overestimates vegetation
water stress and rooting depths. However, our method estimated
appropriate rooting depths that were consistent with ground
observations, and it greatly improved the simulated ET seasonality.
We therefore conclude that these effects will not substantially
affect the rooting depth estimation or model accuracy.

Fourth, a lack of irrigation effects on the water cycle model led
to an estimation of deeper rooting depth in the central valley
cropland regions. Development of an irrigation module is required
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for accurate modeling of water stress in these regions. Currently,
the model results supply the amount of water that would be
required to support vegetation growth during the growing seasons.

5. Conclusion

In this study, we estimated rooting depths in California using
satellite-based ET and an ecosystem model by minimizing
differences between the model-based and satellite-based ET
values and then analyzing the impacts on the accuracy of the
simulated ET seasonality. Large differences were found between
the optimized and soil survey (STATSGO)-based rooting depths in
the northern forest regions. In these areas, the significantly deeper
rooting depths (>3 m) estimated in the study were able to
successfully reproduce the satellite-based ET seasonality with a
peak in the summer, whereas the shallow rooting depths based on
STATSGO (<1.5 m) could not sustain high ETs in summer. Over the
grass and shrub regions in central and southern California,
estimated rooting depths were similar to those reported by
STATSGO, probably due to the shallow rooting depths in these
ecosystems. Our analysis suggests that accurately estimating
rooting depth is important for ecosystem modeling and that
satellite-based data can help to constrain the spatial variability of
rooting depths to improve water and carbon cycle modeling.

This study has two potential implications for the use of
satellite-based data in terrestrial ecosystem modeling. First, we
showed an example of the powerful application of satellite-based
products to improve a terrestrial biosphere model. The satellite-
based products that are independent of the model are useful in
constraining the ecosystem models, as was also shown by Yang
et al. (2007). Second, refinement of the water cycle model in this
study also improved carbon cycle modeling, illustrating that
improving the water cycle model is an important step for accurate
carbon cycle modeling. Especially for seasonally dry forest
environments (e.g., Baker et al., 2008; Ichii et al., 2007; Tanaka
et al., 2004), improved estimation of rooting depth will substan-
tially increase estimated GPP.
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